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has a strong effect on the predictions. The vaporization 
behavior of a hexane fuel droplet is not sensitive to the 
vaporization models. However, for less volatile fuels such as 

decane, the vaporization behavior shows some sensitivity to 
the models. The thin-skin model is not as accurate as the 
other two models which show excellent agreement with 
experimental data. 

(2) The vaporization behavior of a multicomponent fuel 
droplet is better simulated by the infinite-diffusion model. 
However, the difference between the infinite-diffusion and 
diffusion-limit models is not very significant. The thin-skin 
model shows significant deviation from the experimental 
values. 

(3) The variable property effects are important for an 
accurate prediction of droplet velocity and size. Not only the 
effect of temperature but also that of fuel vapor should be 
considered for calculating the thermophysical properties of 
the gas film surrounding the droplet. For low ambient tem- 
peratures, the accurate evaluation of the latent heat of fuel 
also has a noticeable effect on predictions. 

To conclude, the present study illustrates that for relatively 
low ambient temperatures, both the infinite-diffusion and 
diffusion-limit methods can accurately predict the vapor- 
ization of pure as well as multicomponent fuel droplets. 
However, it is important to include the effects of variable 
thermophysical properties of the gas film outside the droplet 
as well as of the liquid-phase properties in a comprehensive 
manner. The present study also indicates the need for meas- 
uring the surface properties of a vaporizing multicomponent 
fuel droplet. 
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INTRODUCTION 

ONE OF the most widely used methods to solve the equation 
of radiation transfer in participating media is the two-flux 
model. Apparently first introduced in the field of astrophysics 
where it is credited to Schuster and Schwarzchild [l], it has 
since been applied to problems in combustion, radiation 
transfer through insulation, solar energy absorption, atmo- 
spheric physics, and spectroscopy (where it is called 
Kubelka-Munk theory). The initial two-flux approximation, 
useful only for diffuse one-dimensional radiation transfer, 
has been extended to two and three dimensions-four and 
six fluxes respectively-and also has been modified to allow 
for partially collimated incident radiation. In the case of 
scattering media, factors that determine how the scattered 
light is distributed in the various axial directions appear in 
the flux equations. This note discusses and compares various 
methods of determining these scattering fractions for the 
two- and six-flux models starting from the properties of 
the scattering particles comprising the medium. Results are 
presented for two sample media, one purely scattering and 
one that also absorbs, and approximate methods for eval- 

uating the scattering fractions are shown to be valid in certain 
ranges of the particle size parameter. 

TWO-FLUX MODEL 

The derivation of the two-flux equations has been rig- 
orously laid out by Brewster [2] and others and will not be 
repeated in detail here. Briefly, however, the general equation 
of transfer for radiative intensity i’ in a general direction S 
in a non-emitting participating medium [l] 

di: 
ds = -ali; -rr,,i;(S) 

o,i 
+zk 4% s iJ(S, o,)@Q., o, w,) do, (1) 

is simplified by assuming that the intensity is constant within 
each of two opposed solid angles (which are hemispheres in 
the two flux case) corresponding to two coordinate axis 
directions, say x and --x. This allows the integral in equation 
(1) to be solved for each hemisphere and results in the two 
equations 
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NOMENCLATURE 

i 
absorption coefficient 
backward scattering fraction (six-flux model) 

B backward scattering fraction (two-flux model) 
f forward scattering fraction (six-flux model) 
.I 

; 
radiation intensity 
radiative flux 

k imaginary refractive index 
n real refractive index 
s sideward scattering fraction 
S arbitrary direction 
x Cartesian coordinate. 

Greek symbols 
0 particle polar angle 

1. wavekength 

P cos (4) 
5 slab polar angle 

0, scattering coefficient 
4 particle azimuthal angle 
@ mixture phase function 
$ slab azimuthal angle 
(0 solid angle. 

Subscripts and superscripts 
i incident 
x. JJ‘. I Cartesian coordinate directions 
i spectral quantity 

approximate. 

‘1 his simphhcation has its greatest applicatron In planar sys- 
tems where the radiation transfer is mainly perpendicular to 
the plane and where scattering is important. (If scattering is 
not important the integral does not appear and other 
methods can also be used to obtain a solution.) The same 
technique can be used in two or three dimensions to 
yield four or six similarly coupled equations, respectively, 
though defining the solid angles-which are no longer 
hemispheres-becomes more difficult. 

s_ 
dx 

- - (2~ + 280,)I: + 2Ba,I, (2a) 

;i = (2a+2Bo,)I, -2BoJ:. (2b) 

-. ^ . . . 
correspondence between (f7, I$) and (5, +) only when the 
incident radiation is parallel to the x-axis. Thus, as is further 
discussed by Brewster [4], for an exact treatment an inte- 
gration over all incoming angles (t’, $‘) must be performed 
and in each instance the fraction of the scattered energy that 
goes forward, or respectively backward, with respect to the 
medium must be calculated. This yields a triple integral 

respect to the direction of incident radiation are not in 
general the same as the angles used to define a direction in 
the planar geometry. In the one-dimensional slab geometry 
the angle 5 is the polar angle measured from the positive x- 
axis, and ij is the azimuthal angle. There is a one to one 

A feature of all flux models is the appearance of scattering 
fractions : B (for backward scattering) in the two-flux model, 
and f, b and s (for forward, backward and sideward) in 
more dimensions. The reduction of the integral governing the 
scattering contribution to i’ in equation (1) gives rise to 
these factors which determine what fraction of the total light 
scattered from a volume element is directed into the forward, 
backward and sideward directions as measured with respect 
to the medium. In the basic scattering process, light is scat- 
tered in all directions from a differential vohtme in the 
medium with the intensity in any direction proportional to 
the mixture phase function @(0,4). The mixture phase func- 
tion, which is an average of the single particle phase functions 
over the particle size distribution [3], gives the radiation 
scattered into a solid angle about (0, 4) divided by the light 
that would be scattered if the scattering were isotropic. The 
angle f3 is measured from the direction of the incident light, 
and the angle 4 is the corresponding azimuthal angle. We 
will assume here that there is no 4 dependence of the scat- 
tered light which is valid for spherical particles, or for a 
collection of randomly oriented particles, and covers most 
cases. (It is not true for instance for scattering by fibers when 
the fibers have a preferred direction.) Thus we have a mixture 
phase function Q(6) which will be considered 3s given. For 
an ensemble of particles it can be measured or calculated, 
e.g. by using Mie theory, if the particles are spherical and 
the size distribution is known. 

This mixture phase function is used to determine the back- 
ward scattering fraction B for use in the two-flux equations. 
There are two ways to accomplish this, one of which is to 
simply integrate the mixture phase function over the rear- 
ward hemisphere 

37 n ss Q(0) sin @dtJ dc$ (3) 
0 Xl 2 

where the factor 1/4n assures the proper normalization. The 
backward sca_ttering fraction determined in this way is 
denoted by B but is only approximate, however. This is 
because the angles used to define the phase function with 

where the variable II = cos (5) has been substituted. The 
relation between the scattering angle (0) and the incoming 
(c’, $‘) and outgoing (5, I//) directions expressed in the spheri- 
cal coordinates fixed in the medium is given by Ozisik [5] as 

cos (0) = cos (5) cos (<‘) + sin (5) sin (5’) cos ($ - $‘). (5) 

Equations (4) and (5) can be used together to calculate B. 
For a comparison between the approximate and the exact 

methods, calculations were carried out for two media, one 
composed of purely scattering particles with an index of 
refraction of 1.21+ O.Oi (which matches the system studied 
by Brewster and Tien [6]), the other of absorbing particles 
with a refractive index of I.8 + 0.75i (corresponding roughly 
to carbon). First, the phase function was determined for 
various particle size parameters (&ii) using Mie theory [7]. 
Then B and B were calculated via equations (3))(5). The 
results are shown in Figs. 1 and 2. It can be seen thdt for 
small size parameters, less than about 0.3. B N B z 0.5. This 
is because in this regime the particles are Rayleigh scatterers 
and the phase function is symmetric about the forward and 
backward directions. For larger values of the size parameter 
B and B both decrease, with the latter dropping to a lower 
value. In this region the backward scattering fraction may 
be underestimated by up to 9 times for the worst case if the 
approximate formula is used. The errors are clearly larger for 
the non-absorbing mixture. In fact, for absorbing particles B 
and B both approach the same value, in this case 0.06, if the 
size parameter is large enough. This is because for large, 
opaque, specular spheres the phase function is isotropic, 
except for the large forward peak due to diffraction whose 
contribution to B decreases as the size parameter increases. 
For an isotropic phase function equations (3) and (4) yield 
the same result : (D/2. 

SIX-FLUX MODEL 

The six-flux model is an extension of the two-flux model 
to three dimensions. By assuming constant intensity over six 
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FIG. I. Comparison of exact and approximate two-flux back- 
ward scattering fractions vs size parameter for n = 1.2 1 and 

k = 0.0. 

solid angles centred about the axes, six coupled equations of 
the type [8,9] 

g_ 
dx 

- - ; [a+ (1 --f)u,ll: 

+ ;bo,l; + +,(I; +I; +I:+I;) (6) 

are obtained. In order to calculate the scattering parameters 
a pyramidal shaped solid angle-formed by connecting the 
comers of a cube to its centre-is centred around each of 
the six positive and negative axis directions. The incoming 
radiation intensity is assumed to be constant within one of 
the pyramidal solid angles and the radiation scattered into 
the six solid angles is calculated. By symmetry the four side- 
ward scattering fractions are all the same. In principle, the 
integration is exactly as in the two-flux case except that the 
limits are complicated by the integration over squares in 
spherical coordinates. 

In order to make the problem more tractable, several 
approximations are possible. First, anfand b^can be defined 
which are calculated as in the two-flux case by assuming that 
the incoming radiation is all directed along the axis. The 
light scattered into the forward and backward pyramids is 
determined and the sideward scattering fractions are found 
by s = (1 -f- b)/4 [8]. A second possibility is to account for 
the diffuse incident radiation by assuming it to be contained 
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FIG. 2. Comparison of exact and approximate two-flux back- 
ward scattering fractions vs size parameter for n = 1.8 and 

k = 0.75. 
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FIG. 3. Comparison of exact and approximate six-flux scat- 
tering fractions vs size parameter for n = 1.21 and k = 0.0. 

within a cone-shaped solid angle centred on the axis that 
subtends the same solid angle as the pyramid. This shape 
simplifies the integration considerably, and is also used for 
the scattered radiation. The appropriate formulas are 

(7a) 

which are analogous to equation (4). For test cases [lo] 
virtually no difference was found between the cone and the 
pyramid integration, so the former is used here due to its 
relative simplicity. The third possibility is to employ equa- 
tions suggested by Chu and Churchill [8] which include the 
full hemisphere as an integration region, but weight the phase 
function with a co? (0) factor. 

The results of these three calculations are shown in Figs. 
3 and 4 for the two sample media. It can immediately be 
recognized that all three methods yield the same back scatter- 
ing factor except for small size parameters (< 0.2) where 
5-10% differences are noted. For small particles (size par- 
ameter less than 0.5) the forward scattering is also nearly the 
same for each method, and indeed the same as the back 
scattering at about 0.2. This gives a sideward scattering frac- 
tion of 0.15, which is lower than 0.2 because small particles 
do not scatter isotropically, but do scatter symmetrically 
forwards and backwards (Rayleigh scattering). At larger size 
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FIG. 4. Comparison of exact and approximate six-flux scat- 
tering fractions vs size parameter for n = 1.8 and k = 0.75. 
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parameters the forward scattering results diverge, with the 
first approximation (incident radiation along axis) sig- 
nificantly overestimating the forward scattering fraction as 
was also found in the two-flux case. The Chu and Churchill 
method also gives too high a value, but to a lesser extent. 
The ripples seen in the curves are the result of the high 
number of peaks in the phase function, the angular position 
of which depend strongly on the size parameter. For a cloud 
of particles of slightly different sizes the mixture phase func- 
tion, and hence f and 6, would cease to oscillate. Again, as 
in the two-flux case, for absorbing particles the scattering 
fractions approach practically the same limit as the size par- 
ameter increases. 

SUMMARY AND CONCLUSIONS 

This paper has presented exact methods of calculating the 
scattering fractions for use in the two- and six-flux radiation 
models, as well as some approximations which can simplify 
the integration of the mixture phase function over the appro- 
priate solid angle. For particle size parameters less than 0.3 
the scattering fractions are constants, and the values B = 0.5 
for the two-flux model and f= b = 0.2, s = 0.15 for the 
six-flux model can be used. For larger size parameters, the 
scattering fractions must be calculated, especially in the case 
of a purely scattering medium. In the two-flux case, the 
integration method developed by Brewster should be used, 
unless the particles are large and absorbing in which case the 
simplification is allowable. For the six-flux model the method 
of Chu and Churchill can be employed for a rapid. if some- 
what too high, estimate of ,f and 6, or the cone integration 
can be applied for a fully valid approximation. In both cases 

tested the Chu and Churchill method was better than the 
assumption of a single angle of incidence along the axis and 
the integration far easier than over the cone. It is therefore 
recommended especially in problems where many deter- 
minations of the scattering fractions are necessary. In all 

cases of weakly or non-absorbing particles care should be 
taken to average over a few particle sizes rather than take a 
nominal size (unless the particles really all have one diam- 
eter), since the strong variations in the phase function lead 
to oscillations in the calculation of the scattering fractions. 
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